5 years ago

Electronic Coupling for Donor-Bridge-Acceptor Systems with a Bridge-Overlap Approach

Electronic Coupling for Donor-Bridge-Acceptor Systems with a Bridge-Overlap Approach
Alessandro Biancardi, Cameron Liss, Seth C. Martin, Marco Caricato
Understanding the modulation of the electronic coupling in donor–acceptor systems connected through an aliphatic bridge is crucial from a fundamental point of view as well as for the development of organic electronics. In this work, we present a first-principles approach for the calculation of the electronic coupling (or transfer integrals) in such systems via a block-diagonalization of the Fock/Kohn–Sham matrix of the supersystem, followed by a projection on the basis of the fragment orbitals of the donor and acceptor groups. The strength of the approach is that the bridge is shared by the donor and acceptor blocks in the diagonalization step, so that through-space and through-bond couplings are obtained simultaneously. The method is applied to two test sets: a series of fused-ring bridged systems and G(T)nG DNA oligomers. The results for the first set are compared to experiment and show an average error lower than 10%. For the DNA set, we show that the coupling may be significantly larger (and the decay with length slower) when the entire backbone is included.

Publisher URL: http://dx.doi.org/10.1021/acs.jctc.7b00431

DOI: 10.1021/acs.jctc.7b00431

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.