3 years ago

Contribution of ammonia-oxidizing archaea and ammonia-oxidizing bacteria to ammonia oxidation in two nitrifying reactors

Preeyaporn Pornkulwat, Papitchaya Srithep, Tawan Limpiyakorn


In this study, two laboratory nitrifying reactors (NRI and NRII), which were seeded by sludge from different sources and operated under different operating conditions, were found to possess distinct dominant ammonia-oxidizing microorganisms. Ammonia-oxidizing archaeal (AOA) amoA genes outnumbered ammonia-oxidizing bacterial (AOB) amoA genes in reactor NRI, while only AOB amoA genes were detectable in reactor NRII. The AOA amoA gene sequences retrieved from NRI were characterized within the Nitrososphaera sister cluster of the group 1.1b Thaumarchaeota. Two inhibitors for ammonia oxidation, allylthiourea (ATU) and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), were applied individually and as a mixture to observe the ammonia-oxidizing activity of both microorganisms in the reactors’ sludge. The results indicated that AOA and AOB jointly oxidized ammonia in NRI, while AOB played the main role in ammonia oxidation in NRII. DNA-stable isotope probing with labeled 13C–HCO3 was performed on NRI sludge. Incorporation of 13C into AOA and AOB implied that both microorganisms may perform autotrophy during ammonia oxidation. Taken together, the results from this study provide direct evidence demonstrating the contribution of AOA and AOB to ammonia oxidation in the nitrifying reactors.

Publisher URL: https://link.springer.com/article/10.1007/s11356-017-1155-z

DOI: 10.1007/s11356-017-1155-z

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.