3 years ago

Atomically Precise Site-Specific Tailoring and Directional Assembly of Superatomic Silver Nanoclusters

Precise Site-Specific Tailoring and Directional
Assembly of Superatomic Silver Nanoclusters
Thomas C. W. Mak, Ren-Wu Huang, Zhao-Yang Wang, Shuang-Quan Zang, Meng-Qi Wang, Peng Luo, Yan-Ling Li, Tong-Tong Jia
Convenient generation of stable superatomic silver clusters and their systematic site-specific tailoring and directional assembly present an enduring and significant challenge. In this work, we prepared a face-centered cubic (fcc) array of Ag14 superatoms protected by face-capping 1,2-dithiolate-o-carborane (C2B10H10S2) ligands, each produced from 1-thiol-o-carborane in crystallization with simultaneous reduction of Ag+ to Ag0. We find that the corner N-donor ligands contribute predominately to the stability and luminescence of the Ag14 superatom. As the first-formed nanocluster [Ag14(C2B10H10S2)6(CH3CN)8]·4CH3CN (NC-1) with labile vertex-coordinated CH3CN ligands is highly unstable, monodendate pyridine ligands were used to replace these CH3CN species site-specifically, giving [Ag14(C2B10H10S2)6(pyridine/p-methylpyridine)8] (NCs-2,3) in gram scale with its core structure intact, which features ultrastability up to 150 °C in air. Moreover, using bidentate N-containing ligands to bridge the superatomic Ag14 building blocks, we constructed an unprecedented hierarchical series of 1D-to-3D superatomic silver cluster-assembled materials (SCAM-1,2,3,4), and SCAM-4 is air-stable up to 220 °C. Furthermore, this series of stable solid-state superatomic-nanocluster materials exhibit tunable dual emission with wide-range thermochromism. The present study constitutes a major step toward the development of ligand-modulation of the structure, stability, assembly, and functionality of superatomic silver nanoclusters.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b11338

DOI: 10.1021/jacs.7b11338

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.