3 years ago

Spin dynamics and Andreev-Bashkin effect in mixtures of one-dimensional Bose gases.

Luca Parisi, Stefano Giorgini, G.E. Astrakharchik

We investigate the propagation of spin waves in two-component mixtures of one-dimensional Bose gases interacting through repulsive contact potentials. By using quantum Monte Carlo methods we calculate static ground-state properties, such as the spin susceptibility and the spin structure factor, as a function of both the intra-species and inter-species coupling strength and we determine the critical parameters for phase separation. In homogeneous mixtures, results of the velocity of spin waves and of its softening close to the critical point of phase separation are obtained by means of a sum-rule approach. We quantify the non-dissipative drag effect, resulting from the Andreev-Bashkin current-current interaction between the two components of the gas, and we show that in the regime of strong coupling it causes a significant suppression of the spin-wave velocity.

Publisher URL: http://arxiv.org/abs/1801.03446

DOI: arXiv:1801.03446v1

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.