5 years ago

Drying and moisture resorption behaviour of various electrode materials and separators for lithium-ion batteries

Drying and moisture resorption behaviour of various electrode materials and separators for lithium-ion batteries
The drying behaviour and water uptake of a variety of commonly used electrode materials (graphite, LiFePO4, LiMn2O4, LiCoO2, Li(NiCoMn)O2) and separators (polyolefin, glass fibre) for lithium-ion batteries (LIBs) are investigated. The drying experiments are carried out using a coulometric Karl Fischer titrator in combination with a vaporiser. This setup leads to a highly sensitive and precise method to quantify water amounts in the microgram range in solid materials. Thereby the mass specific drying behaviour at RT and 120 °C is determined as well as the water resorption of the investigated materials in conditioned air atmosphere (T: 25 °C, RH: 40%). By extracting characteristic water detection rate curves for the investigated materials, a method is developed to predict the water detection beyond the runtime of the experiment. The results help optimising drying procedures of LIB components and thus can save time and costs. It is also shown, that water contaminations in graphite/LiFePO4 coin cells with a LiPF6 based electrolyte lead to a faster capacity fade during cycling and a significant change of the cell impedance.

Publisher URL: www.sciencedirect.com/science

DOI: S0378775317310327

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.