3 years ago

On the wave dispersion and non-reciprocal power flow in space-time traveling acoustic metamaterials.

M. Nouh, M. A. Attarzadeh, H. Al Ba'ba'a

This note analytically investigates non-reciprocal wave dispersion in locally resonant acoustic metamaterials. Dispersion relations associated with space-time varying modulations of inertial and stiffness parameters of the base material and the resonant components are derived. It is shown that the resultant dispersion bias onsets intriguing features culminating in a break-up of both acoustic and optic propagation modes and one-way local resonance band gaps. The derived band structures are validated using the full transient displacement response of a finite metamaterial. A mathematical framework is presented to characterize power flow in the modulated acoustic metamaterials to quantify energy transmission patterns associated with the non-reciprocal response. Since local resonance band gaps are size-independent and frequency tunable, the outcome enables the synthesis of a new class of sub-wavelength low-frequency one-way wave guides.

Publisher URL: http://arxiv.org/abs/1710.03689

DOI: arXiv:1710.03689v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.