3 years ago

Full-disc $^{13}$CO(1-0) mapping across nearby galaxies of the EMPIRE survey and the CO-to-H$_2$ conversion factor.

E. J. Murphy, F. Walter, D. S. Meier, C. Kramer, E. Schinnerer, A. Bolatto, F. Bigiel, E. Rosolowsky, J. Pety, A. Hughes, A. Schruba, A. K. Leroy, K. Sandstrom, A. Usero, M. J. Jiménez-Donaire, M. Gallagher, D. Cormier, K. Sliwa, M. R. Krumholz

Carbon monoxide (CO) provides crucial information about the molecular gas properties of galaxies. While $^{12}$CO has been targeted extensively, isotopologues such as $^{13}$CO have the advantage of being less optically thick and observations have recently become accessible across full galaxy discs. We present a comprehensive new dataset of $^{13}$CO(1-0) observations with the IRAM 30-m telescope of the full discs of 9 nearby spiral galaxies from the EMPIRE survey at a spatial resolution of $\sim$1.5kpc. $^{13}$CO(1-0) is mapped out to $0.7-1r_{25}$ and detected at high signal-to-noise throughout our maps. We analyse the $^{12}$CO(1-0)-to-$^{13}$CO(1-0) ratio ($\Re$) as a function of galactocentric radius and other parameters such as the $^{12}$CO(2-1)-to-$^{12}$CO(1-0) intensity ratio, the 70-to-160$\mu$m flux density ratio, the star-formation rate surface density, the star-formation efficiency, and the CO-to-H$_2$ conversion factor. We find that $\Re$ varies by a factor of 2 at most within and amongst galaxies, with a median value of 11 and larger variations in the galaxy centres than in the discs. We argue that optical depth effects, most likely due to changes in the mixture of diffuse/dense gas, are favored explanations for the observed $\Re$ variations, while abundance changes may also be at play. We calculate a spatially-resolved $^{13}$CO(1-0)-to-H$_2$ conversion factor and find an average value of $1.0\times10^{21}$ cm$^{-2}$ (K.km/s)$^{-1}$ over our sample with a standard deviation of a factor of 2. We find that $^{13}$CO(1-0) does not appear to be a good predictor of the bulk molecular gas mass in normal galaxy discs due to the presence of a large diffuse phase, but it may be a better tracer of the mass than $^{12}$CO(1-0) in the galaxy centres where the fraction of dense gas is larger.

Publisher URL: http://arxiv.org/abs/1801.03105

DOI: arXiv:1801.03105v1

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.