3 years ago

Towards optimal extraction of cosmological information from nonlinear data.

Chirag Modi, Yu Feng, Grigor Aslanyan, Uros Seljak

One of the main unsolved problems of cosmology is how to maximize the extraction of information from nonlinear data. If the data are nonlinear the usual approach is to employ a sequence of statistics (N-point statistics, counting statistics of clusters, density peaks or voids etc.), along with the corresponding covariance matrices. However, this approach is computationally prohibitive and has not been shown to be exhaustive in terms of information content. Here we instead develop a Bayesian approach, expanding the likelihood around the maximum posterior of linear modes, which we solve for using optimization methods. By integrating out the modes using perturbative expansion of the likelihood we construct an initial power spectrum estimator, which for a fixed forward model contains all the cosmological information if the initial modes are gaussian distributed. We develop a method to construct the window and covariance matrix such that the estimator is explicitly unbiased and nearly optimal. We then generalize the method to include the forward model parameters, including cosmological and nuisance parameters, and primordial non-gaussianity. We apply the method in the simplified context of nonlinear structure formation, using either simplified 2-LPT dynamics or N-body simulations as the nonlinear mapping between linear and nonlinear density, and 2-LPT dynamics in the optimization steps used to reconstruct the initial density modes. We demonstrate that the method gives an unbiased estimator of the initial power spectrum, providing among other a near optimal reconstruction of linear baryonic acoustic oscillations.

Publisher URL: http://arxiv.org/abs/1706.06645

DOI: arXiv:1706.06645v2

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.