3 years ago

Schramm's formula for multiple loop-erased random walks.

Adrien Poncelet

We revisit the computation of the discrete version of Schramm's formula for the loop-erased random walk derived by Kenyon. The explicit formula in terms of the Green function relies on the use of a complex connection on a graph, for which a line bundle Laplacian is defined. We give explicit results in the scaling limit for the upper half-plane, the cylinder and the M\"obius strip. Schramm's formula is then extended to multiple loop-erased random walks.

Publisher URL: http://arxiv.org/abs/1801.03126

DOI: arXiv:1801.03126v1

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.