3 years ago

Poisson-Fermi Modeling of Ion Activities in Aqueous Single and Mixed Electrolyte Solutions at Variable Temperature.

Jinn-Liang Liu, Bob Eisenberg

The combinatorial explosion of empirical parameters in tens of thousands presents a tremendous challenge for extended Debye-H\"uckel models to calculate activity coefficients of aqueous mixtures of most important salts in chemistry. The explosion of parameters originates from the phenomenological extension of the Debye-H\"uckel theory that does not take steric and correlation effects of ions and water into account. In contrast, the Poisson-Fermi theory developed in recent years treats ions and water molecules as nonuniform hard spheres of any size with interstitial voids and includes ion-water and ion-ion correlations. We present a Poisson-Fermi model and numerical methods for calculating the individual or mean activity coefficient of electrolyte solutions with any arbitrary number of ionic species in a large range of salt concentrations and temperatures. For each activity-concentration curve, we show that the Poisson-Fermi model requires only three unchanging parameters at most to well fit the corresponding experimental data. The three parameters are associated with the Born radius of the solvation energy of an ion in electrolyte solution that changes with salt concentrations in a highly nonlinear manner.

Publisher URL: http://arxiv.org/abs/1801.03470

DOI: arXiv:1801.03470v1

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.