3 years ago

Monochromatic CT Image Reconstruction from Current-Integrating Data via Deep Learning.

Wenxiang Cong, Ge Wang

In clinical CT, the x-ray source emits polychromatic x-rays, which are detected in the current-integrating mode. This physical process is accurately described by an energy-dependent non-linear integral model on the basis of the Beer-Lambert law. However, the non-linear model is too complicated to be directly solved for the image reconstruction, and is often approximated to a linear integral model in the form of the Radon transform, basically ignoring energy-dependent information. This model approximation would generate inaccurate quantification of attenuation image and significant beam-hardening artifacts. In this paper, we develop a deep-learning-based CT image reconstruction method to address the mismatch of computing model to physical model. Our method learns a nonlinear transformation from big data to correct measured projection data to accurately match the linear integral model, realize monochromatic imaging and overcome beam hardening effectively. The deep-learning network is trained and tested using clinical dual-energy dataset to demonstrate the feasibility of the proposed methodology. Results show that the proposed method can achieve a high accuracy of the projection correction with a relative error of less than 0.2%.

Publisher URL: http://arxiv.org/abs/1710.03784

DOI: arXiv:1710.03784v2

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.