3 years ago

Inactivation of chikungunya virus in blood components treated with amotosalen/ultraviolet A light or amustaline/glutathione

Dana L. Vanlandingham, Adonis Stassinopoulos, Yan-Jang S. Huang, Marion C. Lanteri, Andrew Laughhunn
BACKGROUND Chikungunya virus, a mosquito-borne arbovirus, often co-circulates with the Zika, dengue, and yellow fever viruses in Aedes mosquito-infested areas where cases of arbovirus transfusion-transmitted infections have been reported. Building on past experience to help maintain the availability of safe components during major outbreaks of chikungunya virus in La Reunion, Italy, and Thailand and of Zika virus in the Pacific, the Caribbean, and the Americas, pathogen inactivation is a mitigation strategy to reduce the risk of transfusion-transmitted infection. Inactivation of chikungunya virus was investigated for platelets in 100% plasma using amotosalen/ultraviolet A light, and in red blood cells using amustaline/glutathione. STUDY DESIGN AND METHODS Platelets in 100% plasma and red blood cells (RBCs) were spiked with chikungunya virus. Infectious chikungunya virus titers were measured in contaminated blood products before and after treatment with amotosalen/ultraviolet A light for platelets in 100% plasma and after treatment with amustaline/glutathione for RBCs. Viral infectivity was quantified by plaque assay. RESULTS The mean chikungunya virus infectivity titers before inactivation were 6.50 log10 plaque-forming units/mL for platelets in 100% plasma and 7.60 log10 plaque-forming units/mL for RBCs. No infectivity was detected after amotosalen/ultraviolet A light or amustaline/glutathione treatment, corresponding to greater than 6.5 log10 plaque-forming units/mL and greater than 7.1 log10 plaque-forming units/mL of inactivation, respectively. CONCLUSION Robust levels of chikungunya virus inactivation were achieved for platelets in 100% plasma and for RBC components. The licensed amotosalen/ultraviolet A light technology and the amustaline/glutathione pathogen-reduction system under development may provide an opportunity for comprehensive mitigation of the risk of chikungunya virus transfusion-transmitted infection by plasma, platelets, and RBCs.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/trf.14442

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.