3 years ago

Long-Term Planning of Water Systems in the Context of Climate Non-Stationarity with Deterministic and Stochastic Optimization

Didier Haguma, Robert Leconte


Seasonal inflow variability, climate non-stationarity and climate change are matters of concern for water system planning and management. This study presents optimization methods for long-term planning of water systems in the context of a non-stationary climate with two levels of inflow variability: seasonal and inter-annual. Deterministic and stochastic optimization models with either one time-step (intra-annual) or two time-steps (intra-annual and inter-annual) were compared by using three water system optimization models. The first model used one time-step sampling stochastic dynamic programming (SSDP). The other models with two time-steps are long-term deterministic dynamic programming (LT-DDP) and long-term sampling stochastic dynamic programming (LT-SSDP). The study area is the Manicouagan water system located in Quebec, Canada. The results show that there will be an increase of inflow to hydropower plants in the future climate with an increase of inflow uncertainty. The stochastic optimization with two time-steps was the most suitable for handling climate non-stationarity. The LT-DDP performed better in terms of reservoir storage, release and system efficiency but with high uncertainty. The SSDP had the lowest performance. The SSDP was not able to deal with the non-stationary climate and seasonal variability at the same time. The LT-SSDP generated operating policies with smaller uncertainty compared to LT-DDP, and it was therefore a more appropriate approach for water system planning and management in a non-stationary climate characterized by high inflow variability.

Publisher URL: https://link.springer.com/article/10.1007/s11269-017-1900-6

DOI: 10.1007/s11269-017-1900-6

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.