Short Term Optimal Operation of Water Supply Reservoir under Flood Control Stress using Model Predictive Control
Abstract
Reservoir operations require enhanced operating procedures for water systems under stress attributed to growing water demand and consequences of changing hydro-climatic conditions. This study focuses on the management of the Yuvacik Dam Reservoir for water supply and flood mitigation in the Marmara Region of Turkey. We present an improved operating technique for fulfilling the conflicting water supply and flood mitigation objectives. This is accomplished by incorporating the long term water supply objectives into a Guide Curve (GC) whereas the extreme floods are attenuated by means of short-term optimization based on Model Predictive Control (MPC). The reference case implements operating rules with a constant GC at maximum forebay elevation targeting the fulfillment of the water supply objective. We compare the reference with a new time-dependent GC, derived using an Implicit Stochastic Optimization (ISO) approach. This new curve shows nearly the same performance regarding the water supply objectives, but significantly reduces the flooding risk downstream of the dam. Possible flood events observed at the end of the wet season, when the reservoir is at the maximum level to enable water supply for the dry season, can be eliminated by the application of an additional short-term optimization by MPC. The robustness of the approach is demonstrated via hindcasting experiments.
Publisher URL: https://link.springer.com/article/10.1007/s11269-017-1828-x
DOI: 10.1007/s11269-017-1828-x
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.