3 years ago

Prediction analysis and quality assessment of microwell array images

Hirak Mazumdar, Jang Ho Ha, Tae Hyeon Kim, Bong Geun Chung, Jong Min Lee, Christian D. Ahrberg
Microwell arrays are widely used sensor for the analysis of fluorescent-labelled biomaterials. For rapid detection and automated analysis of microwell arrays, the computational image analysis is required. Support Vector Machines (SVM) can be used for this task. Here, we present a SVM-based approach for the analysis of microwell arrays consisting of three distinct steps: labeling, training for feature selection, and classification into three classes. The three classes are filled, partially filled, and unfilled microwells. Next, the partially filled wells are analyzed by SVM and their tendency towards filled or unfilled tested through applying a Gaussian filter. Through this, all microwells can be categorized as either filled or unfilled by our algorithm. Therefore, this SVM-based computational image analysis allows for an accurate and simple classification of microwell arrays. This article is protected by copyright. All rights reserved

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/elps.201700460

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.