3 years ago

Learning to Detect Good 3D Keypoints

Riccardo Spezialetti, Luigi Di Stefano, Alessio Tonioni, Samuele Salti, Federico Tombari


The established approach to 3D keypoint detection consists in defining effective handcrafted saliency functions based on geometric cues with the aim of maximizing keypoint repeatability. Differently, the idea behind our work is to learn a descriptor-specific keypoint detector so as to optimize the end-to-end performance of the feature matching pipeline. Accordingly, we cast 3D keypoint detection as a classification problem between surface patches that can or cannot be matched correctly by a given 3D descriptor, i.e. those either good or not in respect to that descriptor. We propose a machine learning framework that allows for defining examples of good surface patches from the training data and leverages Random Forest classifiers to realize both fixed-scale and adaptive-scale 3D keypoint detectors. Through extensive experiments on standard datasets, we show how feature matching performance improves significantly by deploying 3D descriptors together with companion detectors learned by our methodology with respect to the adoption of established state-of-the-art 3D detectors based on hand-crafted saliency functions.

Publisher URL: https://link.springer.com/article/10.1007/s11263-017-1037-3

DOI: 10.1007/s11263-017-1037-3

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.