3 years ago

Ultraselective Toluene-Gas Sensor: Nanosized Gold Loaded on Zinc Oxide Nanoparticles

Ultraselective Toluene-Gas Sensor: Nanosized Gold
Loaded on Zinc Oxide Nanoparticles
Akihiro Tou, Yongjiao Sun, Kosuke Watanabe, Koichi Suematsu, Kengo Shimanoe
Selectivity is an important parameter of resistive-type gas sensors that use metal oxides. In this study, a highly selective toluene sensor is prepared using highly dispersed gold-nanoparticle-loaded zinc oxide nanoparticles (Au-ZnO NPs). Au-ZnO NPs are synthesized by coprecipitation and calcination at 400 °C with Au loadings of 0.15, 0.5, and 1.5 mol %. The Au NPs on ZnO are about 2–4 nm in size, and exist in a metallic state. Porous gas-sensing layers are fabricated by screen printing. The responses of the sensor to 200 ppm hydrogen, 200 ppm carbon monoxide, 100 ppm ethanol, 100 ppm acetaldehyde, 100 ppm acetone, and 100 ppm toluene are evaluated at 377 °C in a dry atmosphere. The sensor response of 0.15 mol % Au-ZnO NPs to toluene is about 92, whereas its sensor responses to other combustible gases are less than 7. Such selective toluene detection is probably caused by the utilization efficiency of the gas-sensing layer. Gas diffusivity into the sensing layer of Au-ZnO NPs is lowered by the catalytic oxidation of combustible gases during their diffusion through the layer. The present approach is an effective way to improve the selectivity of resistive-type gas sensors.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b04048

DOI: 10.1021/acs.analchem.7b04048

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.