3 years ago

Gold nanoparticle should understand protein corona for being a clinical nanomaterial

Gold nanoparticle should understand protein corona for being a clinical nanomaterial
Gold nanoparticles (AuNPs) have attracted great attention in biomedical fields due to their unique properties. However, there are few reports on clinical trial of these nanoparticles. In vivo, AuNPs face complex biological fluids containing abundant proteins, which challenge the prediction of their fate that is known as “bio-identity”. These proteins attach onto the AuNPs surface forming protein corona that makes the first step of nano-bio interface and dictates the subsequent AuNPs fate. Protein corona formation even stealth active targeting effect of AuNPs. Manipulating the protein corona identity based on the researcher goal is the way to employ corona to achieve maximum effect in therapy or other applications. In this review, we provide details on the biological identity of AuNPs under various environmental- and/or physiological conditions. We also highlight how the particular corona can direct the biodistribution of AuNPs. We further discuss the strategies available for controlling or reducing corona formation on AuNPs surface and achieving desired effects using AuNPs in vivo by engineering protein corona on their surface.

Publisher URL: www.sciencedirect.com/science

DOI: S0168365918300014

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.