5 years ago

Design of a cosmetic glove stiffness compensation mechanism for toddler-sized hand prostheses

Ronald A. Bos, Dick H. Plettenburg

by Ronald A. Bos, Dick H. Plettenburg

The addition of a cosmetic glove to an upper limb prosthesis has a distinct effect on the cosmetic value, but its viscoelastic behaviour adds a substantial amount of stiffness and hysteresis to the system. As a result, the overall usability of the prosthesis is degraded. A novel negative stiffness element is designed to compensate for the cosmetic glove's stiffness. A combination of linear helical springs and the concept of rolling link mechanisms has resulted in a Rolling Stiffness Compensation Mechanism (RSCM). Results show that the RSCM is capable of exerting a progressive negative stiffness characteristic and can be built small enough to fit inside a 33 mm diameter wrist. Using the RSCM, an otherwise voluntary opening toddler-sized prosthesis is converted into a voluntary closing device, reducing maximum operation forces down to 40 N with a combined efficiency of 52%. Further adjustments to the design are possible to further improve the efficiency of the mechanism. Moreover, changes in geometric relations of the mechanism offers possibilities for a wide range of prostheses and other applications.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0183233

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.