4 years ago

Effect of Carrier Localization on Electrical Transport and Noise at Individual Grain Boundaries in Monolayer MoS2

Effect of Carrier Localization on Electrical Transport and Noise at Individual Grain Boundaries in Monolayer MoS2
Xiang Zhang, Kimberly Hsieh, Yongji Gong, Arindam Ghosh, Pulickel M. Ajayan, Chandra Sekhar Tiwary, Vidya Kochat
Despite its importance in the large-scale synthesis of transition metal dichalcogenides (TMDC) molecular layers, the generic quantum effects on electrical transport across individual grain boundaries (GBs) in TMDC monolayers remain unclear. Here we demonstrate that strong carrier localization due to the increased density of defects determines both temperature dependence of electrical transport and low-frequency noise at the GBs of chemical vapor deposition (CVD)-grown MoS2 layers. Using field effect devices designed to explore transport across individual GBs, we show that the localization length of electrons in the GB region is ∼30–70% lower than that within the grain, even though the room temperature conductance across the GB, oriented perpendicular to the overall flow of current, may be lower or higher than the intragrain region. Remarkably, we find that the stronger localization is accompanied by nearly 5 orders of magnitude enhancement in the low-frequency noise at the GB region, which increases exponentially when the temperature is reduced. The microscopic framework of electrical transport and noise developed in this paper may be readily extended to other strongly localized two-dimensional systems, including other members of the TMDC family.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b02099

DOI: 10.1021/acs.nanolett.7b02099

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.