3 years ago

PHENIX results on three-particle Bose-Einstein correlations in $\sqrt{S_{NN}} = 200$ GeV Au+Au collisions.

Tamás Novák

Bose-Einstein correlations of identical hadrons reveal information about hadron creation from the strongly interacting matter formed in ultrarelativistic heavy ion collisions. The measurement of three-particle correlations may in particular shed light on hadron creation mechanisms beyond thermal/chaotic emission. In this paper we show the status of PHENIX measurements of three pion correlations as a function of momentum differences within the triplets. We analyze the shape of the correlation functions through the assumption of L\'evy sources and a proper treatment of the Coulomb interaction within the triplets. We measure the three-particle correlation strength ($\lambda_3$), which, together with the two-particle correlation strength $\lambda_2$, encodes information about hadron creation mechanisms. From a consistent analysis of two- and three-particle correlation strength we establish a new experimental measure of thermalization and coherence in the source.

Publisher URL: http://arxiv.org/abs/1801.03544

DOI: arXiv:1801.03544v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.