3 years ago

Attractive force on atoms due to blackbody radiation.

Matthias Sonnleitner, Osip Schwartz, Philipp Haslinger, Holger Müller, Monika Ritsch-Marte, Victoria Xu, Helmut Ritsch, Matt Jaffe

Objects at finite temperature emit thermal radiation with an outward energy-momentum flow, which exerts an outward radiation pressure. At room temperature, a cesium atom scatters on average less than one of these blackbody radiation photons every 10^8 years. Thus, it is generally assumed that any scattering force exerted on atoms by such radiation is negligible. However, atoms also interact coherently with the thermal electromagnetic field. In this work, we measure an attractive force induced by blackbody radiation between a cesium atom and a heated, centimeter-sized cylinder which is orders of magnitude stronger than the outward directed radiation pressure. Using atom interferometry, we find that this force scales with the fourth power of the cylinder`s temperature. The force is in good agreement with that predicted from an ac Stark shift gradient of the atomic ground state in the thermal radiation field. This observed force dominates over both gravity and radiation pressure, and does so for a large temperature range.

Publisher URL: http://arxiv.org/abs/1704.03577

DOI: arXiv:1704.03577v3

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.