3 years ago

Electronic Properties of a Functionalized Noble Metal Nanoparticles Covalent Network

Electronic Properties of a Functionalized Noble Metal Nanoparticles Covalent Network
C. Sibilia, R. Matassa, E. Magnano, G. Familiari, A. Belardini, I. Fratoddi, G. Leahu, S. Nappini, I. Venditti, R. Li Voti, C. Battocchio, L. Fontana
Functionalized gold and silver nanoparticles have been prepared and characterized by means of spectroscopic and morphological techniques together focused on electrical measurements on cast deposited films. The Au and Ag nanoparticles have been functionalized with a on purpose prepared conjugated dithiol, 9,9-didodecyl-2,7-bis-thiofluorene (FL), giving rise to organic solvents soluble AuNPs-FL and AgNPs-FL samples, respectively. In the case of AuNPs-FL, well separated nanoparticles, with an average size of about 4 nm, assembled into bidimensionally monolayer network and with regular spatial distributions have been observed by TEM. Synchrotron radiation-XPS data support the observed network formation, showing that all bifunctional ligands end-groups are covalently bonded to metal noble atoms at the nanoparticles surfaces. In order to investigate their interesting conduction properties, electrical measurements evidenced a non-ohmic behavior in the case of the AuNPs-FL thin film, with a conduction mechanism that strongly depends on polarons and bipolarons along the carbon active chain belonging to the fluorene bridge. By increasing the stacked layers of the AuNPs-FL thin film, the conductivity behavior changed following approximately the ohmic law. On the contrary, AgNPs-FL shows higher conductivity, and upon an aging process, a diode behavior was observed that opens perspectives as flexible optoelectronics devices.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b07176

DOI: 10.1021/acs.jpcc.7b07176

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.