5 years ago

Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore

Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore
Josip Ivica, Maurits R. R. de Planque, Philip T. F. Williamson
In resistive pulse sensing of microRNA biomarkers, selectivity is achieved with polynucleotide-extended DNA probes, with the unzipping of a miRNA–DNA duplex in the nanopore recorded as a resistive current pulse. As the assay sensitivity is determined by the pulse frequency, we investigated the effect of cis/trans electrolyte concentration gradients applied over α-hemolysin nanopores. KCl gradients were found to exponentially increase the pulse frequency, while reducing the preference for 3′-first pore entry of the duplex and accelerating duplex unzipping, all manifestations of an enhanced electrophoretic force. Unlike silicon nitride pores, a counteracting contribution from electro-osmotic flow along the pore wall was not apparent. Significantly, a gradient of 0.5/4 M KCl increased the pulse frequency ∼60-fold with respect to symmetrical 1 M KCl, while the duplex dwell time in the nanopore remained acceptable for pulse detection and could be extended by LiCl addition. Steeper gradients caused lipid bilayer destabilization and pore instability, limiting the total number of recorded pulses. The 8-fold KCl gradient enabled a linear relationship between pulse frequency and miRNA concentration for the range of 0.1–100 nM. This work highlights differences between biological and solid-state nanopore sensing and provides strategies for subnanomolar miRNA quantification with bilayer-embedded porins.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01246

DOI: 10.1021/acs.analchem.7b01246

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.