4 years ago

On approximate equivalence of modularity, D and non-negative matrix factorization.

Hui-Min Cheng, Zhenhai Chang, Xianjun Yin, Zhong-Yuan Zhang, Chao Yan

Community structures detection is one of the fundamental problems in complex network analysis towards understanding the topology structures of the network and the functions of it. Nonnegative matrix factorization (NMF) is a widely used method for community detection, and modularity Q and modularity density D are criteria to evaluate the quality of community structures. In this paper, we establish the connections between Q, D and NMF for the first time. Q maximization can be approximately reformulated under the framework of NMF with Frobenius norm, especially when $n$ is large, and D maximization can also be reformulated under the framework of NMF. Q minimization can be reformulated under the framework of NMF with Kullback-Leibler divergence. We propose new methods for community structures detection based on the above findings, and the experimental results on both synthetic and real networks demonstrate their effectiveness.

Publisher URL: http://arxiv.org/abs/1801.03618

DOI: arXiv:1801.03618v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.