5 years ago

Characterization of Intramolecular Interactions of Cytochrome c Using Hydrogen–Deuterium Exchange-Trapped Ion Mobility Spectrometry–Mass Spectrometry and Molecular Dynamics

Characterization of Intramolecular Interactions of Cytochrome c Using Hydrogen–Deuterium Exchange-Trapped Ion Mobility Spectrometry–Mass Spectrometry and Molecular Dynamics
Mark E. Ridgeway, Khoa Pham, Kevin Jeanne Dit Fouque, Francisco Fernandez-Lima, Melvin A. Park, Jaroslava Miksovska, Juan Camilo Molano-Arevalo
Globular proteins, such as cytochrome c (cyt c), display an organized native conformation, maintained by a hydrogen bond interaction network. In the present work, the structural interrogation of kinetically trapped intermediates of cyt c was performed by correlating the ion-neutral collision cross section (CCS) and charge state with the starting solution conditions and time after desolvation using collision induced activation (CIA), time-resolved hydrogen/deuterium back exchange (HDX) and trapped ion mobility spectrometry–mass spectrometry (TIMS-MS). The high ion mobility resolving power of the TIMS analyzer allowed the identification of new ion mobility bands, yielding a total of 63 mobility bands over the +6 to +21 charge states and 20 mobility bands over the −5 to −10 charge states. Mobility selected HDX rates showed that for the same charge state, conformers with larger CCS present faster HDX rates in both positive and negative ion mode, suggesting that the charge sites and neighboring exchange sites on the accessible surface area define the exchange rate regardless of the charge state. Complementary molecular dynamic simulations permitted the generation of candidate structures and a mechanistic model of the folding transitions from native (N) to molten globule (MG) to kinetic intermediates (U) pathways. Our results suggest that cyt c major structural unfolding is associated with the distancing of the N- and C-terminal helices and subsequent solvent exposure of the hydrophobic, heme-containing cavity.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b00844

DOI: 10.1021/acs.analchem.7b00844

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.