3 years ago

Efficient first-principles calculation of phonon assisted photocurrent in large-scale solar cell devices.

Troels Markussen, Tue Gunst, Kurt Stokbro, Mads Brandbyge, Mattias Palsgaard

We present a straightforward and computationally cheap method to obtain the phonon-assisted photocurrent in large-scale devices from first-principles transport calculations. The photocurrent is calculated using nonequilibrium Green's function with light-matter interaction from the first-order Born approximation while electron-phonon coupling (EPC) is included through special thermal displacements (STD). We apply the method to a silicon solar cell device and demonstrate the impact of including EPC in order to properly describe the current due to the indirect band-to-band transitions. The first-principles results are successfully compared to experimental measurements of the temperature and light intensity dependence of the open-circuit voltage of a silicon photovoltaic module. Our calculations illustrate the pivotal role played by EPC in photocurrent modelling to avoid underestimation of the open-circuit voltage, short-circuit current and maximum power. This work represents a recipe for computational characterization of future photovoltaic devices including the combined effects of light-matter interaction, phonon-assisted tunneling and the device potential at finite bias from the level of first-principles simulations.

Publisher URL: http://arxiv.org/abs/1801.03683

DOI: arXiv:1801.03683v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.