4 years ago

Crystal Chemistry and Electrochemistry of LixMn1.5Ni0.5O4 Solid Solution Cathode Materials

Crystal Chemistry and Electrochemistry of LixMn1.5Ni0.5O4 Solid Solution Cathode Materials
Ashfia Huq, Marca Doeff, Saravanan Kuppan, Guoying Chen, Lei Cheng, Jagjit Nanda, Wang Hay Kan
For ordered high-voltage spinel LiMn1.5Ni0.5O4 (LMNO) with the P4321 symmetry, the two consecutive two-phase transformations at ∼4.7 V (vs Li+/Li), involving three cubic phases of LMNO, Li0.5Mn1.5Ni0.5O4 (L0.5MNO), and Mn1.5Ni0.5O4 (MNO), have been well-established. Such a mechanism is traditionally associated with poor kinetics due to the slow movement of the phase boundaries and the large mechanical strain resulting from the volume changes among the phases, yet ordered LMNO has been shown to have excellent rate capability. In this study, we show the ability of the phases to dissolve into each other and determine their solubility limit. We characterized the properties of the formed solid solutions and investigated the role of non-equilibrium single-phase redox processes during the charge and discharge of LMNO. By using an array of advanced analytical techniques, such as soft and hard X-ray spectroscopy, transmission X-ray microscopy, and neutron/X-ray diffraction, as well as bond valence sum analysis, the present study examines the metastable nature of solid-solution phases and provides new insights in enabling cathode materials that are thermodynamically unstable.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b01898

DOI: 10.1021/acs.chemmater.7b01898

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.