3 years ago

The cavity approach for Steiner trees Packing problems.

Alfredo Braunstein, Anna Paola Muntoni

The Belief Propagation approximation, or cavity method, has been recently applied to several combinatorial optimization problems in its zero-temperature implementation, the Max-Sum algorithm. In particular, recent developments to solve the Edge-Disjoint paths problem and the Prize collecting Steiner tree Problem on graphs have shown remarkable results for several classes of graphs and for benchmark instances. Here we propose a generalization of these techniques for two variants of the Steiner trees packing problem where multiple "interacting" trees have to be sought within a given graph. Depending on the interaction among trees we distinguish the Vertex-Disjoint Steiner trees Problem, where trees cannot share nodes, from the Edge-Disjoint Steiner trees Problem, where edges cannot be shared by trees but nodes can be members of multiple trees. Several practical problems of huge interest in network design can be mapped into these two variants, for instance, the physical design of Very Large Scale Integration (VLSI) chips. The formalism described here relies on two components edge-variables that allows us to formulate a massage-passing algorithm for the V-DStP and two algorithms for the E-DStP differing in the scaling of the computational time with respect to some relevant parameters. We will show that one of the two formalisms used for the edge-disjoint variant allow us to map the Max-Sum update equations into a weighted maximum matching problem over proper bipartite graphs. We developed a heuristic procedure based on the Max-Sum equations that shows excellent performance in synthetic networks (in particular outperforming standard multi-step greedy procedures by large margins) and on large benchmark instances of VLSI for which the optimal solution is known, on which the algorithm found the optimum in two cases and the gap to optimality was never larger than 4 %.

Publisher URL: http://arxiv.org/abs/1712.07041

DOI: arXiv:1712.07041v2

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.