3 years ago

Agro-industrial waste recycling by Trichosporon fermentans : conversion of waste sweetpotato vines alone into lipid

Yue Chen, Qi Shen, Hui Lin, Yuhua Zhao, Qun Wang

Abstract

Agro-industrial waste can be used to replace traditional carbohydrates, such as sucrose, starch, and glucose in many industrial fermentation processes. This study investigated the conversion of pre-treated waste sweetpotato vines (SV) into lipid by Trichosporon fermentans under the separate hydrolysis and fermentation (SHF) and the simultaneous saccharification and fermentation (SSF) processes. The results showed that SV autoclaving significantly increased the lipid accumulation of T. fermentans compared with acid or alkaline hydrolysis. The effects of different pre-treatments on SV were also studied by scanning electron microscopy and Fourier transform infrared spectroscopy, which showed the partial removal of the aliphatic fractions, hemicelluloses, and lignin during pre-treatment. Moreover, the lipid yield of T. fermentans in SSF was 6.98 g L−1, which was threefold higher than that (2.79 g L−1) in SHF, and the lipid contents of yeast in SSF and SHF were 36 and 25%, respectively. Overall, this study indicated that SSF using autoclaved SV could increase the growth and lipid production of T. fermentans and provided an efficient way to realize the resource utilization of waste SV.

Publisher URL: https://link.springer.com/article/10.1007/s11356-018-1231-z

DOI: 10.1007/s11356-018-1231-z

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.