3 years ago

Self-Assembly of Lecithin and Bile Salt in the Presence of Inorganic Salt in Water: Mesoscale Computer Simulation

Self-Assembly of Lecithin and Bile Salt in the Presence of Inorganic Salt in Water: Mesoscale Computer Simulation
Shih-Huang Tung, Alexei R. Khokhlov, Pavel V. Komarov, Viktor A. Ivanov, Anastasia A. Markina
The influence of inorganic salt on the structure of lecithin/bile salt mixtures in aqueous solution is studied by means of dissipative particle dynamics simulations. We propose a coarse-grained model of phosphatidylcholine and two types of bile salts (sodium cholate and sodium deoxycholate) and also take into account the presence of low molecular weight salt. This model allows us to study the system on rather large time and length scales (up to about ∼20 μs and 50 nm) and to reveal mechanisms of experimentally observed increasing viscosity upon increasing the low molecular weight salt concentration in this system. We show that increasing the low molecular weight salt concentration induces the growth of cylinder-like micelles formed in lecithin/bile salt mixtures in water. These wormlike micelles can entangle into transient networks displaying perceptible viscoelastic properties. Computer simulation results are in good qualitative agreement with experimental observations.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b04566

DOI: 10.1021/acs.jpcb.7b04566

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.