3 years ago

Nitrogen-rich mesoporous carbon supported iron catalyst with superior activity for Fischer-Tropsch synthesis

Nitrogen-rich mesoporous carbon supported iron catalyst with superior activity for Fischer-Tropsch synthesis
Superior iron-based Fischer-Tropsch synthesis (FTS) catalysts (Fe/NMCs) were developed by impregnating high amount of iron (40 wt%) over nitrogen-rich mesoporous carbons (NMCs) with high porosities. The large pore volumes and specific surface areas of NMCs realized the high loadings and proper dispersions of iron while the nitrogen-containing groups enhanced the basicities of the catalysts. Weak metal-support interactions were observed in Fe/NMCs, which improved the reduction, carburization of iron, and further the FTS activities. FTS tests indicated a medium amount of nitrogen (≤8.3 wt%) did not show obvious effect on the activity of the catalyst, but a much higher amount of nitrogen (≥16.5 wt%) could result in a significant decrease of activity. Nitrogen-containing groups could effectively suppress the methane selectivity and improve the lower olefins selectivity in the FTS reaction. The hydrocarbon productivity of the Fe/NMCs was up to 0.62 g HC/(h·g cat.) at 260 °C, 1 MPa, and H2/CO ratio of 1, much higher than that of any other iron catalyst reported under similar conditions. As a result of the superior performance, Fe/NMCs could be one of ideal candidates for iron-based FTS catalysts in the future.

Publisher URL: www.sciencedirect.com/science

DOI: S0008622318300150

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.