3 years ago

Enhanced electrical and optical properties of single-layered MoS 2 by incorporation of aluminum

Suk Yang, Jang-Yeon Kwon, Kyung Park, Hojoong Kim, Jin Young Moon, Yun-Jin Park, Hyung-Jun Kim


Electrical and optical enhancements of single-layer semiconducting materials such as transition metal dichalcogenides have recently been studied to achieve sensitive properties via external treatments, such as the formation of organic/inorganic protecting layers on field-effect transistors (FETs), thermal annealing, and nano-dot doping of sensors and detectors. Here, we propose a new analytical approach to electrical and optical enhancement through a passivation process using atomic layer deposition (ALD), and demonstrate a synthesized MoS2 monolayer incorporated with Al atoms in an Al2O3 passivation layer. The incorporated Al atoms in the MoS2 monolayer are clearly observed by spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) and TEM-energy-dispersive X-ray spectroscopy results. We demonstrate that the chemically incorporated FETs exhibit highly enhanced mobilities of approximately 3.7 cm2·V−1·s−1, forty times greater than that of as-synthesized MoS2, with a three-fold improvement in the photoluminescence properties.

Publisher URL: https://link.springer.com/article/10.1007/s12274-017-1682-4

DOI: 10.1007/s12274-017-1682-4

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.