5 years ago

Contribution of the rigid amorphous fraction to physical ageing of semi-crystalline PLLA

Contribution of the rigid amorphous fraction to physical ageing of semi-crystalline PLLA
The physical ageing of poly(l-lactic acid) (PLLA) samples crystallized in a wide temperature range, is compared, through the analysis of the enthalpy relaxation, with the behavior of a completely amorphous sample, in the same undercooling conditions. A preliminary determination of the percentage of the different phases in the semi-crystalline samples (crystalline, mobile amorphous and rigid amorphous fractions) has been performed. The enthalpy loss (Δh a ), normalized to the mobile amorphous content, has allowed to differentiate PLLA samples crystallized at different temperatures, because the samples crystallized at lower temperatures, characterized by a slightly constrained mobile amorphous fraction, exhibit a smaller enthalpy loss. In addition, the normalized Δh a data relative to the semi-crystalline PLLA samples have been found to deviate from the Δh a values of the amorphous sample at high undercooling. This trend has been ascribed to the contribution of the rigid amorphous fraction to the structural relaxation process. The experimental data have been explained by supposing that structural relaxation in amorphous and semi-crystalline PLLA occurs at low undercooling via cooperative segmental motions, whereas, at high undercooling, through small-scale local motions, which take place also in the rigid amorphous fraction.

Publisher URL: www.sciencedirect.com/science

DOI: S0032386117307656

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.