5 years ago

Photochemically Generated Thiyl Free Radicals Observed by X-ray Absorption Spectroscopy

Photochemically Generated Thiyl Free Radicals Observed by X-ray Absorption Spectroscopy
Kei Goto, Graham N. George, Mark J. Hackett, Eileen Y. Sneeden, Eric Block, Monica Barney, Ingrid J. Pickering, Julien J. H. Cotelesage, Roger C. Prince
Sulfur-based thiyl radicals are known to be involved in a wide range of chemical and biological processes, but they are often highly reactive, which makes them difficult to observe directly. We report herein X-ray absorption spectra and analysis that support the direct observation of two different thiyl species generated photochemically by X-ray irradiation. The thiyl radical sulfur K-edge X-ray absorption spectra of both species are characterized by a uniquely low energy transition at about 2465 eV, which occurs at a lower energy than any previously observed feature at the sulfur K-edge and corresponds to a 1s→3p transition to the singly occupied molecular orbital of the free radical. Our results constitute the first observation of substantial levels of thiyl radicals generated by X-ray irradiation and detected by sulfur K-edge X-ray absorption spectroscopy.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b05116

DOI: 10.1021/jacs.7b05116

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.