5 years ago

Density Gradation of Open Metal Sites in the Mesospace of Porous Coordination Polymers

Density Gradation of Open Metal Sites in the Mesospace of Porous Coordination Polymers
Masakazu Higuchi, Shigeyoshi Sakaki, Ryotaro Matsuda, Simon Mathew, Kim Hyeon-Deuk, Shin-ichiro Noro, Jiajia Zheng, I-Ya Chang, Jingui Duan, Susumu Kitagawa, Easan Sivaniah, Shinpei Kusaka
The prevalence of the condensed phase, interpenetration, and fragility of mesoporous coordination polymers (meso-PCPs) featuring dense open metal sites (OMSs) place strict limitations on their preparation, as revealed by experimental and theoretical reticular chemistry investigations. Herein, we propose a rational design of stabilized high-porosity meso-PCPs, employing a low-symmetry ligand in combination with the shortest linker, formic acid. The resulting dimeric clusters (PCP-31 and PCP-32) exhibit high surface areas, ultrahigh porosities, and high OMS densities (3.76 and 3.29 mmol g–1, respectively), enabling highly selective and effective separation of C2H2 from C2H2/CO2 mixtures at 298 K, as verified by binding energy (BE) and electrostatic potentials (ESP) calculations.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b05702

DOI: 10.1021/jacs.7b05702

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.