5 years ago

Electronic Effect of Ruthenium Nanoparticles on Efficient Reductive Amination of Carbonyl Compounds

Electronic Effect of Ruthenium Nanoparticles on Efficient Reductive Amination of Carbonyl Compounds
Michikazu Hara, Yusuke Kita, Takashi Kinemura, Tasuku Komanoya, Keigo Kamata
Highly selective synthesis of primary amines over heterogeneous catalysts is still a challenge for the chemical industry. Ruthenium nanoparticles supported on Nb2O5 act as a highly selective and reusable heterogeneous catalyst for the low-temperature reductive amination of various carbonyl compounds that contain reduction-sensitive functional groups such as heterocycles and halogens with NH3 and H2 and prevent the formation of secondary amines and undesired hydrogenated byproducts. The selective catalysis of these materials is likely attributable to the weak electron-donating capability of Ru particles on the Nb2O5 surface. The combination of this catalyst and homogeneous Ru systems was used to synthesize 2,5-bis(aminomethyl)furan, a monomer for aramid production, from 5-(hydroxymethyl)furfural without a complex mixture of imine byproducts.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b04481

DOI: 10.1021/jacs.7b04481

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.