3 years ago

DuctTeip: An efficient programming model for distributed task based parallel computing.

Afshin Zafari, Martin Tillenius, Elisabeth Larsson

Current high-performance computer systems used for scientific computing typically combine shared memory computational nodes in a distributed memory environment. Extracting high performance from these complex systems requires tailored approaches. Task based parallel programming has been successful both in simplifying the programming and in exploiting the available hardware parallelism for shared memory systems. In this paper we focus on how to extend task parallel programming to distributed memory systems. We use a hierarchical decomposition of tasks and data in order to accommodate the different levels of hardware. We test the proposed programming model on two different applications, a Cholesky factorization, and a solver for the Shallow Water Equations. We also compare the performance of our implementation with that of other frameworks for distributed task parallel programming, and show that it is competitive.

Publisher URL: http://arxiv.org/abs/1801.03578

DOI: arXiv:1801.03578v1

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.