3 years ago

Deep Classification of Epileptic Signals.

Kien Nguyen, Sridha Sridharan, Clinton Fookes, David Ahmedt-Aristizaba

Electrophysiological observation plays a major role in epilepsy evaluation. However, human interpretation of brain signals is subjective and prone to misdiagnosis. Automating this process, especially seizure detection relying on scalp-based Electroencephalography (EEG) and intracranial EEG, has been the focus of research over recent decades. Nevertheless, its numerous challenges have inhibited a definitive solution. Inspired by recent advances in deep learning, we propose a new classification approach for EEG time series based on Recurrent Neural Networks (RNNs) via the use of Long-Short Term Memory (LSTM) networks. The proposed deep network effectively learns and models discriminative temporal patterns from EEG sequential data. Especially, the features are automatically discovered from the raw EEG data without any pre-processing step, eliminating humans from laborious feature design task. We also show that, in the epilepsy scenario, simple architectures can achieve competitive performance. Using simple architectures significantly benefits in the practical scenario considering their low computation complexity and reduced requirement for large training datasets. Using a public dataset, a multi-fold cross-validation scheme exhibited an average validation accuracy of 95.54\% and an average AUC of 0.9582 of the ROC curve among all sets defined in the experiment. This work reinforces the benefits of deep learning to be further attended in clinical applications and neuroscientific research.

Publisher URL: http://arxiv.org/abs/1801.03610

DOI: arXiv:1801.03610v1

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.