3 years ago

Asynchronous Mobile-Edge Computation Offloading: Energy-Efficient Resource Management.

Changsheng You, Rui Zhang, Kaibin Huang, Yong Zeng

Mobile-edge computation offloading (MECO) is an emerging technology for enhancing mobiles' computation capabilities and prolonging their battery lives, by offloading intensive computation from mobiles to nearby servers such as base stations. In this paper, we study the energy-efficient resource-management policy for the asynchronous MECO system, where the mobiles have heterogeneous input-data arrival time instants and computation deadlines. First, we consider the general case with arbitrary arrival-deadline orders. Based on the monomial energy-consumption model for data transmission, an optimization problem is formulated to minimize the total mobile-energy consumption under the time-sharing and computation-deadline constraints. The optimal resource-management policy for data partitioning (for offloading and local computing) and time division (for transmissions) is shown to be computed by using the block coordinate decent method. To gain further insights, we study the optimal resource-management design for two special cases. First, consider the case of identical arrival-deadline orders, i.e., a mobile with input data arriving earlier also needs to complete computation earlier. The optimization problem is reduced to two sequential problems corresponding to the optimal scheduling order and joint data-partitioning and time-division given the optimal order. It is found that the optimal time-division policy tends to balance the defined effective computing power among offloading mobiles via time sharing. Furthermore, this solution approach is extended to the case of reverse arrival-deadline orders. The corresponding time-division policy is derived by a proposed transformation-and-scheduling approach, which first determines the total offloading duration and data size for each mobile in the transformation phase and then specifies the offloading intervals for each mobile in the scheduling phase.

Publisher URL: http://arxiv.org/abs/1801.03668

DOI: arXiv:1801.03668v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.