3 years ago

Identifying the Topology of Undirected Networks from Diffused Non-stationary Graph Signals.

Santiago Segarra, Rasoul Shafipour, Antonio G. Marques, Gonzalo Mateos

We address the problem of inferring an undirected graph from nodal observations, which are modeled as non-stationary graph signals generated by local diffusion dynamics that depend on the structure of the unknown network. Using the so-called graph-shift operator (GSO), which is a matrix representation of the graph, we first identify the eigenvectors of the shift matrix from realizations of the diffused signals, and then estimate the eigenvalues by imposing desirable properties on the graph to be recovered. Different from the stationary setting where the eigenvectors can be obtained directly from the covariance matrix of the observations, here we need to estimate first the unknown diffusion (graph) filter -- a polynomial in the GSO that preserves the sought eigenbasis. To carry out this initial system identification step, we exploit different sources of information on the arbitrarily-correlated input signal driving the diffusion on the graph. We first explore the simpler case where the observations, the input information, and the unknown graph filter are linearly related. We then address the case where the relation is given by a system of matrix quadratic equations, which arises in pragmatic scenarios where only the second-order statistics of the inputs are available. While such quadratic filter identification problem boils down to a non-convex fourth order polynomial minimization, we discuss identifiability conditions, propose efficient algorithms to approximate the solution and analyze their performance. Numerical tests illustrate the effectiveness of the proposed topology inference algorithms in recovering brain, social and urban transportation networks using synthetic and real-world signals.

Publisher URL: http://arxiv.org/abs/1801.03862

DOI: arXiv:1801.03862v1

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.