3 years ago

Biosynthesis of flavone C -glucosides in engineered Escherichia coli

Prakash Parajuli, Jae Kyung Sohng, Ramesh Prasad Pandey, Dipesh Dhakal, Anil Shrestha


Two plant-originated C-glucosyltransferases (CGTs) UGT708D1 from Glycine max and GtUF6CGT1 from Gentiana triflora were accessed for glucosylation of selected flavones chrysin and luteolin. Uridine diphosphate (UDP)-glucose pool was enhanced in Escherichia coli cell cytosol by introducing heterologous UDP-glucose biosynthetic genes, i.e., glucokinase (glk), phosphoglucomutase (pgm2), and glucose 1-phosphate uridylyltransferase (galU), along with glucose facilitator diffusion protein from (glf) from different organisms, in a multi-monocistronic vector with individual T7 promoter, ribosome binding site, and terminator for each gene. The C-glucosylated products were analyzed by high-performance liquid chromatography-photodiode array, high-resolution quadruple time-of-flight electrospray ionization mass spectrometry, and one-dimensional nuclear magnetic resonance analyses. Fed-batch shake flask culture showed 8% (7 mg/L; 16 μM) and 11% (9 mg/L; 22 μM) conversion of chrysin to chrysin 6-C-β-D-glucoside with UGT708D1 and GtUF6CGT1, respectively. Moreover, the bioengineered E. coli strains with exogenous UDP-glucose biosynthetic genes and glucose facilitator diffusion protein enhanced the production of chrysin 6-C-β-D-glucoside by approximately 1.4-fold, thus producing 10 mg/L (12%, 24 μM) and 14 mg/L (17%, 34 μM) by UGT708D1 and GtUF6CGT1, respectively, without supplementation of additional UDP-glucose in the medium. The biotransformation was further elevated when the bioengineered strain was scaled up in lab-scale fermentor at 3 L volume. HPLC analysis of fermentation broth extract revealed 50% (42 mg/L, 100 μM) conversion of chrysin to chrysin 6-C-β-D-glucoside at 48 h upon supplementation of 200 μM of chrysin. The maximum conversion of luteolin was 38% (34 mg/L, 76 μM) in 50-mL shake flask fermentation at 48 h. C-glucosylated derivative of chrysin was found to be more soluble and more stable to high temperature, different pH range, and β-glucosidase enzyme, than O-glucosylated derivative of chrysin.

Publisher URL: https://link.springer.com/article/10.1007/s00253-017-8694-6

DOI: 10.1007/s00253-017-8694-6

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.