3 years ago

The Effects of Nitrogen on Structure, Morphology and Electrical Resistance of Tantalum by Ion Implantation Method

Ali Bahari, Amir Hoshang Ramezani, Siamak Hoseinzadeh

Abstract

In this paper, samples of tantalum with purities of 99.99% (0.58 mm thickness) were implanted by Nitrogen ions. The ions’ implantation process was performed at 30 keV and also at different portions which were in the range between 1 × 1017 and 1 × 1018 ions/cm2. The electrical characteristics were investigated on tantalum nitrides and Ta structures by current–voltage. The samples’ surface morphology was also studied through the atomic force microscopy. Through the application of the X-ray diffraction technique, the microstructure of the modified surfaces was obtained after ion implantation. Results of the experiments show the formation of hexagonal tantalum nitride (TaN0.43), as well as the fact that ion dose increases, more interstitial spaces are occupied by nitrogen atoms in the target crystal. The electrical resistivity of the tantalum after nitrogen implantation is found to increase with ion doses. Experimental data demonstrated that different nitrogen dose in ion beam powerfully affects microstructure, phase formation, surface morphology and resistivity of the tantalum. The changes in nitrogen ions were found to be responsible for variation in the resistivity values.

Publisher URL: https://link.springer.com/article/10.1007/s10904-017-0769-4

DOI: 10.1007/s10904-017-0769-4

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.