5 years ago

Synthesis and biological evaluation in vitro and in mammalian cells of new heteroaryl carboxyamides as HIV-protease inhibitors

Synthesis and biological evaluation in vitro and in mammalian cells of new heteroaryl carboxyamides as HIV-protease inhibitors
New heteroaryl HIV-protease inhibitors bearing a carboxyamide spacer were synthesized in few steps and high yield, from commercially available homochiral epoxides. Different substitution patterns were introduced onto a given isopropanoyl-sulfonamide core modifying the type of heteroarene and the central core, with the presence of either H or benzyl group. Their in vitro inhibition activity against recombinant protease showed a general beneficial effect of carboxyamide moiety, the IC50 values ranging between 1 and 15nM. In particular benzofuryl derivatives showed IC50 values among the best for such structurally simple inhibitors. Docking analysis allowed to identify the favorable situation of such benzofuryl derivatives in terms of number of interactions in the active site, supporting the experimental results on activity. The inhibition activity of such molecules has been also evaluated in HEK293 cells expressing the protease fused to green fluorescent protein, by western blotting analysis, fluorescence microscopy and cytofluorimetry.

Publisher URL: www.sciencedirect.com/science

DOI: S0968089617310362

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.