3 years ago

Structure based drug design of Pim-1 kinase followed by pharmacophore guided synthesis of quinolone-based inhibitors

Structure based drug design of Pim-1 kinase followed by pharmacophore guided synthesis of quinolone-based inhibitors
Over expression of Human phosphatidyl inositol mannoside kinases isoform 1 (Pim-1 kinase) has been reported in several leukemia and solid tumors. Our continuous interest to reveal the secrecies of the mysterious Pim-1 kinase binding pocket has led us to employ a structure based drug design procedure based on receptor-ligand pharmacophore generation protocol implemented in Discovery Studio 4.5 (DS 4.5). Subsequently, we collected 104 crystal structures of Pim-1 kinase from the Protein Data Bank (PDB) and used them to generate pharmacophores based on the anticipated co-crystallized ligand-Pim 1 kinase receptor interactions. All selected pharmacophoric features were enumerated and only those that had corresponding valuable receptor-ligand interactions were retained. This was followed by modeling all pharmacophore combinations and scoring them according to their Receiver Operating Characteristic (ROC) curve analysis parameters as well as a DS.4.5 built-in Genetic Function Algorithm (GFA) validating model. Accordingly, 111 pharmacophores resulted with acceptable ROC performances; 1XWS_2_04, 2BIK_2_06, and 1XWS_2_06 (ROC AUC value of: 0.770, 0.743 and 0.741 respectively) were the best pharmacophores. These pharmacophores were employed to guide the synthesis of new series of 7-[(2-Carboxyethyl)amino]-1-substituted-6-fluoro-8-nitro-4-oxo-1,4-dihydro-quinoline-3-carboxylic acid and their reduced 8-amino derivatives. The synthesized compounds were later evaluated for their Pim-1 kinase inhibitory potencies. Of which the most potent illustrated an IC50 value of 0.29µM against Pim-1 kinase.

Publisher URL: www.sciencedirect.com/science

DOI: S0968089617310714

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.