3 years ago

High-CO2 Requirement as a Mechanism for the Containment of Genetically Modified Cyanobacteria

High-CO2 Requirement as a Mechanism for
the Containment of Genetically Modified Cyanobacteria
Brian F. Pfleger, Gina C. Gordon, Thatcher W. Root, Nathaniel R. Bennett, Haoxiang Lyu, Ryan L. Clark
As researchers engineer cyanobacteria for biotechnological applications, we must consider potential environmental release of these organisms. Previous theoretical work has considered cyanobacterial containment through elimination of the CO2-concentrating mechanism (CCM) to impose a high-CO2 requirement (HCR), which could be provided in the cultivation environment but not in the surroundings. In this work, we experimentally implemented an HCR containment mechanism in Synechococcus sp. strain PCC7002 (PCC7002) through deletion of carboxysome shell proteins and showed that this mechanism contained cyanobacteria in a 5% CO2 environment. We considered escape through horizontal gene transfer (HGT) and reduced the risk of HGT escape by deleting competence genes. We showed that the HCR containment mechanism did not negatively impact the performance of a strain of PCC7002 engineered for L-lactate production. We showed through coculture experiments of HCR strains with ccm-containing strains that this HCR mechanism reduced the frequency of escape below the NIH recommended limit for recombinant organisms of one escape event in 108 CFU.

Publisher URL: http://dx.doi.org/10.1021/acssynbio.7b00377

DOI: 10.1021/acssynbio.7b00377

You might also like
Never Miss Important Research

Researcher is an app designed by academics, for academics. Create a personalised feed in two minutes.
Choose from over 15,000 academics journals covering ten research areas then let Researcher deliver you papers tailored to your interests each day.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.