3 years ago

Determination of ibuprofen enantiomers in breast milk using vortex-assisted matrix solid-phase dispersion and direct chiral liquid chromatography

A mixture of β-cyclodextrin (β-CD) and primary and secondary amine (PSA) sorbents was employed for the extraction and quantification of ibuprofen enantiomers from human breast milk, combining a vortex-assisted matrix solid-phase dispersion method (MSPD) and direct chiral liquid chromatography (CLC) with ultraviolet detection (UV). The MSPD sample preparation procedure was optimized focusing on both the type and amount of dispersion/sorption sorbents and the nature of the elution solvent, in order to obtain acceptable recoveries and avoiding enantiomer conversion. These MSPD parameters were optimized with the aid of an experimental design approach. Hence, a factorial design was used for identification of the main variables affecting the extraction process of ibuprofen enantiomers. Under optimum selected conditions, MSPD combined with direct CLC-UV was successfully applied for ibuprofen enantiomeric determination in breast milk at enantiomer levels between 0.15 and 6.0μgg−1. The proposed analytical method also provided good repeatability, with relative standard deviations of 6.4% and 8.3% for the intra-day and inter-day precision, respectively.

Publisher URL: www.sciencedirect.com/science

DOI: S0021967317310907

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.