4 years ago

Bayesian approach to peak deconvolution and library search for high resolution gas chromatography – Mass spectrometry

Bayesian approach to peak deconvolution and library search for high resolution gas chromatography – Mass spectrometry
A novel probabilistic Bayesian strategy is proposed to resolve highly coeluting peaks in high-resolution GC-MS (Orbitrap) data. Opposed to a deterministic approach, we propose to solve the problem probabilistically, using a complete pipeline. First, the retention time(s) for a (probabilistic) number of compounds for each mass channel are estimated. The statistical dependency between m/z channels was implied by including penalties in the model objective function. Second, Bayesian Information Criterion (BIC) is used as Occam's razor for the probabilistic assessment of the number of components. Third, a probabilistic set of resolved spectra, and their associated retention times are estimated. Finally, a probabilistic library search is proposed, computing the spectral match with a high resolution library. More specifically, a correlative measure was used that included the uncertainties in the least square fitting, as well as the probability for different proposals for the number of compounds in the mixture. The method was tested on simulated high resolution data, as well as on a set of pesticides injected in a GC-Orbitrap with high coelution. The proposed pipeline was able to detect accurately the retention times and the spectra of the peaks. For our case, with extremely high coelution situation, 5 out of the 7 existing compounds under the selected region of interest, were correctly assessed. Finally, the comparison with the classical methods of deconvolution (i.e., MCR and AMDIS) indicates a better performance of the proposed algorithm in terms of the number of correctly resolved compounds.

Publisher URL: www.sciencedirect.com/science

DOI: S000326701730750X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.