3 years ago

Enhanced Switchable Ferroelectric Photovoltaic Effects in Hexagonal Ferrite Thin Films via Strain Engineering

Enhanced
Switchable Ferroelectric Photovoltaic Effects in Hexagonal Ferrite
Thin Films via Strain Engineering
Chan-Ho Yang, Seungyang Heo, Donghoon Kim, Jucheol Park, Hyeon Han, Hyun Myung Jang, Sang Yeol Nam, Kanghyun Chu
Ferroelectric photovoltaics (FPVs) are being extensively investigated by virtue of switchable photovoltaic responses and anomalously high photovoltages of ∼104 V. However, FPVs suffer from extremely low photocurrents due to their wide band gaps (Eg). Here, we present a promising FPV based on hexagonal YbFeO3 (h-YbFO) thin-film heterostructure by exploiting its narrow Eg. More importantly, we demonstrate enhanced FPV effects by suitably exploiting the substrate-induced film strain in these h-YbFO-based photovoltaics. A compressive-strained h-YbFO/Pt/MgO heterojunction device shows ∼3 times enhanced photovoltaic efficiency than that of a tensile-strained h-YbFO/Pt/Al2O3 device. We have shown that the enhanced photovoltaic efficiency mainly stems from the enhanced photon absorption over a wide range of the photon energy, coupled with the enhanced polarization under a compressive strain. Density functional theory studies indicate that the compressive strain reduces Eg substantially and enhances the strength of d–d transitions. This study will set a new standard for determining substrates toward thin-film photovoltaics and optoelectronic devices.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b16700

DOI: 10.1021/acsami.7b16700

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.