5 years ago

Activated biochar: Preparation, characterization and electroanalytical application in an alternative strategy of nickel determination

Activated biochar: Preparation, characterization and electroanalytical application in an alternative strategy of nickel determination
This work reports for the first time the use of chemically activated biochar as electrode modifier for nickel determination. The biochar activation was performed by refluxing with HNO3, which promoted a higher nickel preconcentration compared to unmodified and modified biochar precursor electrodes. Morphological and structural characterization revealed the increase of surface acid groups, surface area and porosity of biochar after activation. Nickel determination was investigated adopting an alternative voltammetric methodology based on monitoring the Ni(II)/Ni(III) redox couple. In the proposed method, it was not necessary to use a complexing agent and the biochar itself was responsible for the analyte preconcentration. A linear response for Ni(II) concentration range from 1.0 to 30 μmol L−1 and a limit of detection of 0.25 μmol L−1 were obtained. The method was successfully applied for Ni(II) determination in spiked samples of bioethanol fuel and discharge water, with recoveries values between 103 and 109%.

Publisher URL: www.sciencedirect.com/science

DOI: S0003267017307316

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.